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Pruszynski JA, Lillicrap TP, Scott SH. Complex spatiotemporal tuning in
human upper-limb muscles. J Neurophysiol 103: 564–572, 2010. First
published November 18, 2009; doi:10.1152/jn.00791.2009. Correla-
tions between neural activity in primary motor cortex (M1) and
arm kinematics have recently been shown to be temporally exten-
sive and spatially complex. These results provide a sophisticated
account of M1 processing and suggest that M1 neurons encode
high-level movement trajectories, termed “pathlets.” However,
interpreting pathlets is difficult because the mapping between M1
activity and arm kinematics is indirect: M1 activity can generate
movement only via spinal circuitry and the substantial complexi-
ties of the musculoskeletal system. We hypothesized that filter-like
complexities of the musculoskeletal system are sufficient to gen-
erate temporally extensive and spatially complex correlations be-
tween motor commands and arm kinematics. To test this hypoth-
esis, we extended the computational and experimental method
proposed for extracting pathlets from M1 activity to extract path-
lets from muscle activity. Unlike M1 activity, it is clear that muscle
activity does not encode arm kinematics. Accordingly, any spatio-
temporal correlations in muscle pathlets can be attributed to
musculoskeletal complexities rather than explicit higher-order rep-
resentations. Our results demonstrate that extracting muscle path-
lets is a robust and repeatable process. Pathlets extracted from the
same muscle but different subjects or from the same muscle on
different days were remarkably similar and roughly appropriate for
that muscle’s mechanical action. Critically, muscle pathlets in-
cluded extensive spatiotemporal complexity, including kinematic
features before and after the present muscle activity, similar to that
reported for M1 neurons. These results suggest the possibility that
M1 pathlets at least partly reflect the filter-like complexities of the
periphery rather than high-level representations.

I N T R O D U C T I O N

Over a century of research has established that primary
motor cortex (M1) plays a critical role in generating voluntary
upper-limb movements, although considerable debate remains
about the details of how M1 activity causes movement. To
address this issue, many studies have examined how M1
activity is correlated to movement-related parameters at a fixed
time delay. Indeed, correlations have been found with various
parameters including hand direction (Georgopoulos et al. 1982;
Schwartz et al. 1988), velocity (Moran and Schwartz 1999),
force (Cheney and Fetz 1980; Evarts 1968; Hepp-Reymond
et al. 1978; Sergio and Kalaska 1998), joint motion/torque
(Gribble and Scott 2002; Herter et al. 2007; Scott and Kalaska
1997), and muscle activity (Morrow and Miller 2003). The
observed correlations are sometimes taken as evidence that a

neuron’s activity contributes to cause a given movement pa-
rameter at a fixed time delay.

An alternative link between M1 activity and movement, first
proposed nearly 100 years ago (Leyton and Sherrington 1917),
is that M1 neurons cause specific movement fragments. Indeed,
electrical stimulation of M1 can result in complex, time-
varying movements that appear to be part of a coordinated
action (Brecht et al. 2004; Graziano et al. 2002). Recent work
has highlighted this possibility by providing a sophisticated
correlation technique and experimental paradigm to extract the
movement fragments encoded by individual M1 neurons (Hat-
sopoulos et al. 2007). In that study, the authors trained mon-
keys to reach to randomly appearing spatial targets while
recording activity from individual M1 neurons. The rich set of
movements was then used to extract the kinematic trajectory
(or “pathlet”) that was best correlated with the firing rate of
individual M1 neurons. Strikingly, this extraction consistently
resulted in pathlets that were spatially complex and temporally
extensive. Extracted pathlets often spanned 400 ms and in-
cluded dramatic changes in directional preference. More in-
triguingly, the discharge of a neuron correlated not only with
future kinematic patterns, but also with kinematics that had
already occurred.

Extracted pathlets provide a more sophisticated account of
neural processing in M1. On the other hand, it is unclear
whether extracted pathlets reveal a causal relationship between
M1 activity and arm movement. Understanding the causal link
is difficult because M1 activity can generate movement only
via spinal processing (Perlmutter et al. 1998; Pierrot-Deseil-
ligny and Burke 2005) and the substantial complexities of the
musculoskeletal system, such as the force–velocity dependence
of muscle (Joyce et al. 1969; Rack and Westbury 1969; Scott
et al. 1996) and the inertial properties of the limb (Hogan
1985). These filter-like complexities can lead to correlations
between M1 activity and time-invariant features of movement
even if no such causal relationships are present (Mussa-Ivaldi
1988; Todorov 2000).

We hypothesized that M1 pathlets at least partly reflect
complexities of the musculoskeletal system rather than high-
level representations (Pruszynski et al. 2007). Although this is
difficult to test directly, we can gain insight by extracting
pathlets relating muscle activity and arm movement. It is clear
that muscle activity does not encode high-level representations
of arm movement; muscle activity causes muscular force that
is then related to arm movement via Newtonian physics.
Accordingly, if spatiotemporal features are present in muscle
pathlets, they are likely the by-product of peripheral complex-
ities, not high-level representations. Moreover, if muscle path-
lets are similar to M1 pathlets, then M1 pathlets may also
reflect peripheral complexities.
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M E T H O D S

Subjects

Seven university-aged subjects (five males; two females) partici-
pated in the experiment. One subject (#1) performed the same exper-
iment on two separate days, for a total of eight analyzed experimental
sessions. The first and second sessions from the same subject are
referred to as “a” and “b,” respectively. All subjects were neurolog-
ically unimpaired, had normal or corrected-to-normal vision, and gave
informed consent according to a protocol approved by the Queen’s
University Research Ethics Board.

Apparatus

Subjects performed the experiments with a robotic exoskeleton
(Kinesiological Instrument for Normal and Altered Reaching Move-
ment [KINARM]; BKIN Technologies, Kingston, Ontario, Canada)
that permits combined flexion and extension movements of the shoul-
der and elbow in the horizontal plane (Nozaki et al. 2006; Scott 1999).
Target lights and simulated hand feedback were presented to the
subject in the horizontal plane via a heads-up display composed of an
overhead projector and semitransparent mirror.

Behavioral task

We used a modified version of the random-target pursuit task
(Hatsopoulos et al. 2007). In brief, subjects reached to visual targets
(radius � 1 cm) presented randomly within the arms’ workspace
(24 � 24-cm area centered on the hand when shoulder and elbow
angles were 45 and 90°, respectively) (Fig. 1, A and B). When subjects
reached the displayed target, it disappeared and another randomly

placed target appeared; this continued for 30 s per trial, with no
constraints on how many targets could be reached in a trial. Subjects
were instructed to reach at a comfortable pace and not encouraged to
maximize the number of targets that they reached. A total of 60 such
trials made up the experiment, which lasted about 90 min including
setup time and breaks between trials.

Muscle activity

Surface electromyographic (EMG) recordings were obtained from
up to seven upper-limb muscles involved with flexion or extension at
the elbow and/or shoulder: brachioradialis (Br, monoarticular elbow
flexor, n � 7), biceps long (Bi, biarticular flexor, n � 8), triceps lateral
(TLat, monoarticular elbow extensor, n � 8), triceps long (TLo,
biarticular extensor, n � 8), deltoid anterior (DA, monoarticular
shoulder flexor, n � 4), deltoid posterior (DP, monoarticular shoulder
extensor, n � 8), and pectoralis major (PM, monoarticular shoulder
flexor, n � 8). Prior to electrode placement, the skin was cleaned and
abrased with rubbing alcohol and the electrode contacts were covered
with conductive gel. Electrodes (DE-2.1; Delsys, Boston, MA) were
placed on the belly of the muscle oriented along the muscle fiber and
the reference electrode (Dermatrode; American Imex, Irvine, CA) was
attached to the ankle. Signals were amplified (gain � 103–104) and
band-pass filtered (20–450 Hz) by a commercially available system
(Bagnoli; Delsys) then digitally sampled at 1,000 Hz. More details are
provided in our previous publications (Pruszynski et al. 2008, 2009).

Encoding model

We used a modified version of the movement-fragment extraction
technique originally introduced by Hatsopoulos and colleagues (2007)
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FIG. 1. Exemplar kinematics and muscle activity. A: sub-
jects were presented with visual targets (radius � 1 cm) located
randomly within a 24 � 24 cm area (dotted) centered at the tip
of their index finger when shoulder (�s) and elbow angles (�e)
were 45 and 90°, respectively. When subjects reached the
currently displayed target, it would disappear and another target
would be presented. Subjects were instructed to reach at a
comfortable pace and not encouraged to maximize reached
targets. B: exemplar hand trajectory for a single trial. The dotted
gray line represents the extent of the target area. C: section of
hand velocity (toward/away axis � gray line; left/right � black
line) from a single trial. The red and blue filled areas show one
section of hand velocity of optimal duration and offset (before/
after time � �100/�200 ms) associated with a particular peak
of muscle activity. D: empirical and model muscle activity from
the same trial. The vertical axis represents the magnitude of
muscle activity and is presented in arbitrary units. The gray line
is muscle activity from a single muscle sample and the black
line is the model prediction of muscle activity with the optimal
pathlet duration and offset.

565PATHLETS IN MUSCLES

J Neurophysiol • VOL 103 • JANUARY 2010 • www.jn.org



for neural data, in which a generalized linear model was used to
determine the appropriate parameters for maximizing the likelihood of
observing a neural spike (or not) within a small sampling window
given a particular kinematic trajectory. In its simplest form this can be
formalized as P[spike(t) � v�t0] � exp(k� �v�t0 � �), which is maximized
when the kinematic trajectory (in terms of velocity, v�t0) is equal to that
neuron’s preferred velocity trajectory (k�); � is an offset parameter of
the model.

We were interested in extracting preferred movement fragments for
muscle activity as measured via electromyography (EMG). Since EMG
signals are real-valued, we used a modified model that can be summa-
rized as P[EMG(t) � v�t0] � Normal [exp(k� �v�t0 � �), �2], where EMG(t) is
the muscle activity, k� is the muscle’s preferred trajectory, v�t0 is a particular
(not normalized) velocity trajectory, and � is an offset term. The sampling
rate used for the modeling was 200 Hz. We maximized the probability of
the data under this model by optimizing k� and � using the fmincon
function in Matlab (The MathWorks, Natick, MA). That is, we mini-
mized the sum of squared error between predicted and actual EMG for
each muscle sample. Integrated versions of these velocity trajectories are
used for visual representations of the empirical data and thus represent
preferred spatial paths, or “pathlets.”

The optimal pathlet duration and shift were calculated across all our
collected muscle samples by ranking the ability of 80 potential
pathlets (ranging from 50 to 500 ms in duration and �100 to 250 in
shift) to predict EMG activity on a test set (last 30 of the 60 collected
trials) of kinematic/EMG data not used for fitting the model. Specif-
ically, we ranked each pathlet for every individual muscle sample
according to the sum of squared error between its prediction of EMG
and the actual EMG on the test set. The optimal pathlet was then
defined as that which, on average, yielded the best rank across muscle
samples.

Testing the encoding model

To confirm the functionality of the extraction technique we created
a data set of synthetic muscle activity. We used the encoding model
to generate EMG output [EMG(t)] given a particular preferred veloc-
ity trajectory (the “true” trajectory, k�) and a set of hand velocities
taken from empirical data generated by Subject 1b; the offset param-
eter (�) was set to 0.

We chose a true preferred velocity trajectory that was spiral-shaped,
had a duration (temporal length of trajectory around time 0) of 300 ms,
and a shift (temporal offset of trajectory center) of �50 ms (Fig. 2A).
Such a trajectory incorporates kinematic data from �100 ms before
the current EMG to �200 ms afterward and thus we sometimes refer
to these trajectories with respect to their temporal extent before/after
the current EMG [�100/�200 ms, equivalent to lead/lag notation
used in Hatsopoulos et al. (2007)]. It is important to clarify the
mapping between the duration/shift parameters and before/after nota-
tion. The duration parameter refers to the overall length of the pathlet
that, by default, is centered at 0 ms. A pathlet with 300-ms duration
and 0-ms shift incorporates kinematic data from �150 ms before
to �150 ms after the current EMG. The shift term then determines the
placement of the center of the pathlet. Thus a pathlet with 300-ms
duration and �100-ms shift would incorporate kinematic data from
�50 ms before to �250 ms after the current EMG.

Given the synthetic EMG and a subset of the same kinematic data
set (first 30 trials from Subject 1b), we attempted to extract the
preferred velocity trajectory using the encoding model described
earlier. That is, we estimated k� and � from the model for 80 potential
preferred velocity shifts/durations (duration: ranging from 50 to 500
ms in 50-ms intervals, 10 durations total; shift: ranging from �100 to
�250 ms in 50-ms intervals, 8 shifts total). We then ranked the 80
candidate preferred trajectories by their ability to predict the synthetic
EMG as measured by the sum of squared error between predicted and
synthetic EMG. Note that we compared EMG from only the second
half of the kinematic data set that was not used to extract the preferred
velocity trajectories. If the extraction technique is working well, the
best-ranked preferred velocity trajectories should have spatiotemporal
properties similar to those of the true preferred velocity trajectory.
Ideally, our technique would choose the preferred velocity trajectory
with a spiral-like shape and duration and shift of 300 and �50 ms,
respectively (before/after � �100/�200 ms).

R E S U L T S

Features of behavior

Subjects had little difficulty learning the task and were able
to move smoothly and accurately between targets. On average,
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FIG. 2. Testing the encoding model. A: the “true” preferred
velocity trajectory used to generate synthetic muscle activity
for testing pathlet extraction (duration: 300 ms; offset: �50
ms). The next 3 trajectories are those extracted from the
synthetic muscle activity (see METHODS). Dots are placed on
each trajectory at 5-ms intervals. Numbers indicate trajectory
rank (1st � best) in predicting the synthetic muscle activity on
a test set of kinematic data among 80 candidates. For each
trajectory, blue and red portions represent time before and after
current muscle activity, respectively; before/after are referred
to as lead/lag time in Hatsopoulos et al. (2007). The white dot
represents the origin and all trajectories are on the same
arbitrary scale. The black dot represents time 0 relative to
muscle activity. For the 80th ranked trajectory, which incorpo-
rates time only before current muscle activity, the star indicates
the beginning of the trajectory. B: ranking of all candidate
trajectories. The horizontal axis represents time before (blue)
and after (red) current muscle activity. The vertical axis repre-
sents trajectory ranking for predicting muscle activity on a data
set not used to fit the model. Each line represents one of the 80
tested trajectories. C: synthetic and extracted muscle activity
from a small portion of one test-set trial. The vertical axis
represents the magnitude of muscle activity in arbitrary units.
The gray line is the synthetic muscle activity generated by the
true trajectory shown in A. The black, cyan, and purple are
predictions of muscle activity by the 1st, 40th, and 80th ranked
trajectories, respectively.
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subjects reached 41 targets (SD � 12) per trial, although there
were significant differences between subjects [range � 23–52
targets; two-way ANOVA, subjects � trial number, main
effect of subject, F(6,209) � 303, P � 10�6]. Such differences
are not surprising, given that subjects were instructed to reach
at a comfortable pace and were not encouraged to maximize
the number of targets. Notably, there was no significant in-
crease or decrease in the number of targets per trial [main
effect of trial number, F(29,209) � 0.7, P � 0.84], suggesting
that the task did not induce substantial learning or fatigue and
that subjects maintained a similar strategy throughout the
experimental session. Robust behavioral stability was found in
one subject who completed the same experiment on two
separate days and showed a modest, though significant, de-
crease in the number of targets achieved per trial in the second
experimental session [day 1: 52 targets per trial (SD 8); day 2:
50 targets per trial (SD 4); t-test, t118 � 2.2, P � 0.03].

Functionality of the extraction technique

We confirmed the functionality of the extraction technique
by creating a synthetic data set of muscle activity using a
known preferred velocity trajectory (duration: 300 ms; shift: 50
ms; spiral-like shape; Fig. 2A, “true”) coupled with empirical
hand-velocity kinematics (see METHODS). The preferred trajec-
tory best able to predict the synthetic muscle activity (lowest
sum of squared error on the test data set) from 80 candidates
had spatiotemporal features (duration/shift: 300/�100 ms; spi-
ral-like shape; Fig. 2A, labeled “1st”) that were very similar to
those of the true trajectory and such similarity clearly de-
creased for worse-ranked trajectories (Fig. 2A, labeled “40th”
and “80th”). Furthermore, there was clear structure in the
ranking whereby better trajectories tended to have a duration
and shift similar to those of the true trajectory (Fig. 2B).
Although the spatiotemporal differences among candidate tra-
jectories were substantial, even the worst-ranked trajectory
captured the basic features of the synthetic muscle activity
(Fig. 2C). We found no substantial difference between the
synthetic and predicted muscle activity for the best-ranked
trajectory (correlation coefficient, r � 0.999) and even the 40th
ranked trajectory generated good predictions (r � 0.993). The
correlation for the worst-ranked trajectory was substantially
lower (r � 0.581).

Extracting pathlets from muscle activity

Muscle activity was collected via electromyography (EMG)
from up to seven muscles from each subject. Each arm muscle
sample showed clear phasic activity associated with reaching
in both agonist and antagonist phases of movement (Fig. 1, C
and D).

The principal interests of the present study were 1) to extract
pathlets from simultaneously collected muscle activity and
kinematic data and 2) to determine the extent to which muscle
pathlets demonstrated spatiotemporal complexity. We first
ranked each of the 80 pathlets (ranging from 50 to 500 ms in
duration and �100 to 250 in shift) in order of their ability to
predict the actual EMG on a test set of data not used to fit the
pathlets (i.e., the sum of squared error; see Fig. 3A for an
exemplar ranking and Fig. 1D for an exemplar EMG predic-
tion). We then found the optimal pathlet duration and shift by

ranking the ability of the 80 potential pathlets in terms of their
average rank across all muscle samples (Fig. 3B). The optimal
pathlet was 300 ms in duration and had a �50-ms offset and
thus incorporated kinematics ranging from �100 ms before to
�200 ms after the current EMG activity (before/after referred
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to as lead/lag in Hatsopoulos et al. 2007). Across all muscle
samples, this optimal pathlet had a mean rank of 10th (SD 13;
median rank � 7th) and was ranked in the top 10% of pathlets
in 60% of all samples (Fig. 3B). On average, the predictions
made by the optimal pathlet had a correlation of 0.277 (SD
0.123) with EMG from the test set, compared with correlations
of 0.097 (SD 0.065) and 0.280 (SD 0.127) for the worst- and
best-ranked pathlets on each sample, respectively.

As with M1 neurons (Hatsopoulos et al. 2007), there was a
clear trend whereby the best pathlets tended to be long in
duration and incorporated kinematic information both before
and after current muscle activity. In fact, the average length of
optimal pathlets determined for each muscle sample was 297
ms (SD 84) and nearly all muscle samples (49/50, 98%)
yielded optimal pathlets that included time both before and
after the current muscle activity.

Pathlet rankings were impressively stable across muscle
samples, with no significant difference in optimal pathlet
duration as a function of muscle [two-way ANOVA; F(6,49) �
0.86, P � 0.53] or subject [F(6,49) � 0.83, P � 0.57]. Such
stability is demonstrated in Fig. 3C, which shows the ranking
of three exemplar pathlets (that ranked 1st, 40th, and 80th
across the population) for every collected muscle sample; note
the stability in the pathlet ranking, with the best pathlet con-
sistently performing well and the worst pathlet performing
almost universally poorly.

After selecting the optimal pathlet duration and shift, we
calculated the pathlet for each collected muscle sample using
the optimal duration/shift. The resultant pathlet shapes can be
broadly understood with respect to the mechanical action of the
muscle from which they were extracted. For example, deltoid
posterior, a muscle that generates shoulder extensor torque,
resulted in pathlets that included slowing of movements to the
left and slightly away from the body followed by dramatic
increases in velocity directed to the right and slightly toward
the body (Fig. 4, A–C). The involvement of deltoid posterior in
rightward velocities can be understood from the muscles’
mechanical action since generation of shoulder extension ve-
locity results mostly in rightward hand velocity throughout the
workspace of the task. This is shown in Fig. 4D, where we plot
the hand velocity that results from a unit shoulder extension
velocity at various locations in the workspace. Another prin-
cipal feature of the trajectory—the presence of a countermove-
ment—where rightward movements are preceded by leftward
ones (approximately �50 to 100 ms on Fig. 4A), likely reflects
the muscle activity required to slow the inertial mass of the arm
as it is moving leftward and reaccelerate it to the right.

The extracted pathlets for other muscles could be similarly
understood by their mechanics and the task constraints (Fig. 5).
Pectoralis major, a shoulder flexor largely involved in the
generation of shoulder flexion velocity (Figs. 4G and 5, PM)
resulted in pathlets that were essentially opposite to those for
deltoid posterior (Figs. 4, D–F and 5, DP). Pathlets from
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deltoid anterior, a synergistic shoulder flexor, demonstrate
patterns similar to those of pectoralis major (Fig. 5, DA).
Elbow muscle pathlets were oriented away from the body and
to the right for extensors (Fig. 5, TLat) and toward the body
and to the left for flexors (Fig. 5, Br), which again closely
mirrors their mechanical action at the elbow for the given arm
orientation and the workspace of the task. Last, pathlets from
biarticular muscles (Fig. 5, Bi and TLo) appear qualitatively
intermediate to monoarticular shoulder flexor and elbow flexor
muscle pathlets.

These pathlets indicate that there is a complex relationship
between EMG activity and hand motion, whereby pathlets
often change direction within the temporal extent of their
duration. Given their complex shape, pathlets were impres-
sively robust with a striking similarity in shape for the same
muscle across subjects (columns in Fig. 5), with a mean
pairwise correlation (r) between pathlets of 0.72 (SD 0.23).
Such correlations were moderate to high for all collected arm
muscles: biceps (0.70, SD 0.18), brachioradialis (0.49, SD
0.37), triceps lateral (0.72, SD 0.22), triceps long (0.69, SD
0.20), pectoralis major (0.83, SD 0.09), deltoid anterior (0.65,
SD 0.19), and deltoid posterior (0.85, SD 0.09). When com-
paring correlations across muscles groups, we found a system-
atic pattern for different muscle group combinations (Table 1).
Muscle samples from the same muscle group were highly
correlated, muscles with similar mechanical actions (i.e., syn-
ergists) were positively correlated, muscles with opposite me-
chanical action were negatively correlated, and muscles that
spanned different joints demonstrated weak and/or inconsistent
correlations. Last, we found that pathlets were particularly
consistent between muscle samples for the same subject col-
lected in two different sessions (labeled 1a and 1b on Fig. 5),
with a mean correlation coefficient of 0.94 (SD 0.07).

We applied the same encoding model in a joint-velocity
coordinate system to quantify the preferred trajectory of upper-
limb muscles relative to shoulder and elbow joint movements.
As with hand-based pathlets, we found that better joint-based
pathlets (in terms of predicting EMG on the test set) tended to
be temporally extensive and incorporate movements both be-
fore and after the current EMG (Fig. 6A). The optimal pathlet
chosen was 150 ms in duration with a 0-ms shift [mean rank of
7th (SD 13); median rank � 4th, in top 10%: 82% of samples]
and thus included kinematics from �75 ms before to �75 ms
after the current EMG, substantially shorter than the optimal
hand-based pathlet that was 300 ms in duration. In fact, across
all collected muscle samples, the best-ranked pathlets in joint-
space were significantly shorter than those extracted in hand-
space [joint: 104 ms (SD 87); hand: 297 ms (SD 84); t-test, t98 �
�11.3; P � 10�3]. There was no significant difference in
optimal pathlet duration as a function of muscle [two-way
ANOVA; F(6,49) � 0.36, P � 0.90] or subject [F(6,49) � 1.07,
P � 0.39].

Joint-based pathlets were very robust, with a mean pairwise
correlation across multiple samples of the same muscle of 0.80
(SD 0.15) and a systematic pattern of correlations for different
muscle group combinations as seen for hand-based pathlets
(Table 2). As with hand-based pathlets, joint-based pathlets
could be understood by the mechanical action of the muscle
from which it was extracted (Fig. 6B). For example, deltoid
posterior, a muscle that generated shoulder extensor torque
resulted in pathlets that included slowing of shoulder flexor
movements midway through the pathlet, followed by increases
in velocity in the shoulder extensor direction (see last few red
data points in Fig. 6B). The opposite pattern was observed for

Br Bi TLat TLo DP PM DA

1a

2

3

4

5

6

7

1b

Mean

FIG. 5. Extracted pathlets from each muscle sample. Each panel represents
the extracted pathlet using the optimal duration and shift (�100 ms before to
�200 ms after the current EMG) as described in Fig. 2A. The columns and
rows represent muscle and subjects, respectively. Subject 1a and 1b refer to
data sets from the same subject but different sessions. The last row represents
the mean pathlet for each muscle. Depicted pathlets represent integrated
version of the optimal velocity trajectory and thus can be thought to represent
a spatial path, or pathlet. Empty cells reflect the fact that we did not collect
muscle activity for all candidate muscles from every subject.

TABLE 1. Correlation coefficients (r) of hand-based pathlets
across subjects

Br Bi TLat TLo PM DA DP

Br 0.49
Bi 0.50 0.70
TLat �0.17 �0.53 0.72
TLo �0.59 �0.67 0.30 0.69
PM �0.02 0.37 �0.75 �0.08 0.83
DA �0.18 0.19 �0.59 0.10 0.76 0.65
DP �0.02 �0.44 0.78 0.15 �0.85 �0.71 0.85
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FIG. 6. Pathlet extraction in joint coordinates. A: average ranking of pathlets
across subjects and muscles. Same format as that in Fig. 3B. B: mean pathlets for
each muscle sample. Format is the same as that in Fig. 5, except that the axes are
presented in joint-space where left, right, down, and up represent shoulder
extension, shoulder flexion, elbow extension, and elbow flexion, respectively.
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deltoid anterior and pectoralis major, consistent with their
mechanical action as generators of shoulder flexion.

D I S C U S S I O N

In the present experiment, we investigated whether correlations
between muscle activity and arm kinematics (i.e., pathlets) were
temporally extensive and spatially complex. We used a modified
version of the computational and experimental approach applied
previously for determining spatiotemporal correlations between
M1 neurons and arm kinematics (Hatsopoulos et al. 2007). Sub-
jects reached to randomly appearing targets while we recorded
arm kinematics and muscle activity from multiple muscles span-
ning the shoulder and elbow, including mono- and biarticulars.
Unlike standard center-out reaching tasks (Georgopoulos et al.
1982), where subjects make stereotyped movements between a
central target and a small number of peripheral targets, random-
target pursuit results in an extensive set of reaching profiles
sampling a wide range of positions and velocities in the arm’s
workspace. The extensive sampling of arm kinematics allowed us
to construct a general linear model to find the spatiotemporal
hand-velocity (and joint-velocity) trajectory, which maximized
our ability to predict muscle activity. Integrated versions of
optimal velocity trajectories represent optimal spatial paths and
are termed “pathlets.”

An impressive feature of the present results is the reproduc-
ibility of the pathlet extraction process. We first tested our
ability to extract pathlets by creating a synthetic data set of
muscle activations based on known pathlet and kinematic
profiles taken from the empirical data. We successfully recov-
ered the underlying pathlet (Fig. 2), suggesting that the tech-
nique, and our implementation of it, worked well. When
pathlets were extracted for the same muscle across subjects, the
resulting pathlets were very similar (Figs. 5 and 6) and the
correlation between pathlets was impressive (Tables 1 and 2).
When the same subject repeated the experiment in two differ-
ent experimental sessions, the extracted pathlets were ex-
tremely similar (compare Subject 1a with 1b in Fig. 4). Taken
together, these results suggest that extracting spatiotemporal
trajectories is a reliable and effective method of describing the
relationship between arm kinematics and muscle activity.

Our results demonstrate that muscle pathlets are temporally
extensive and spatially complex. Optimal muscle pathlets in
hand-based coordinates included movements from 100 ms
before to 200 ms after the current EMG; optimal pathlets in
joint coordinates were substantially shorter, although the opti-
mal pathlet still incorporated movements from 75 ms before to
75 ms after the current EMG. In both coordinate systems, there
was a clear trend favoring pathlets that included time both

before and after the current EMG (Figs. 3B and 6A). Extracted
pathlets were also spatially complex, often changing direction
midway through their span, although such changes could be
readily understood from the mechanical action of a given
muscle. For example, the optimal hand-based pathlet for pos-
terior deltoid, a muscle that extends the shoulder, starts moving
toward the left and away from the body (before the current
EMG), and then shows an abrupt change in direction and ends
moving to the right and toward the body (after the current
EMG), which is broadly consistent with the generation of
shoulder extension torque (the expected contribution of this
muscle) to decelerate the shoulder and then accelerate it in the
opposite direction. A similar interpretation can be made with
the joint-based pathlet for deltoid posterior (Fig. 6B).

Since muscles have no high-level representations of arm kine-
matics, muscle pathlets are likely the by-product of the complex-
ities of transforming muscle activity into muscle force (Brown and
Loeb 1999, 2000a,b; Brown et al. 1999; Zajac 1989) and the
Newtonian relationship between muscle forces and arm kinemat-
ics. For example, muscles change their effectiveness at generating
force as a function of muscle length (Rack and Westbury 1969)
and velocity (Joyce et al. 1969; Scott et al. 1996) and the
conversion from muscle forces to arm kinematics is sensitive to
the geometry of the limb and its inertial properties (Hogan 1985).
Furthermore, the temporal relationship between muscle activity
and muscle force and eventual arm kinematics is not instanta-
neous. Muscle activity leads to muscle force only after a substan-
tial delay, with an activation time constant of about 50 ms, and the
muscle continues to generate force when muscle activity has
ceased, with a deactivation time constant of about 65 ms (Bawa
and Stein 1976; Brown and Loeb 2000b). Even after muscle force
is generated it must integrate over time to cause changes in hand
acceleration, velocity, and position (resulting in autocorrelations
in the kinematic signals). It is these complex-state dependencies,
temporal delays, and autocorrelations that preclude a simple
mapping between muscle activity and arm kinematics, resulting in
pathlets that are spatially complex and temporally extensive when
viewed relative to hand- or joint-based coordinates.

Although extracted pathlets were complex in both hand and
joint coordinates, we found that joint-based pathlets were
significantly shorter in duration than hand-based pathlets. This
reduced duration likely reflects the fact that a muscle’s force is
more closely related to the generation of velocity at its spanned
joint(s) rather than the generation of velocity in hand-based
coordinates. Consider the action of a monoarticular elbow
flexor muscle at two different arm configurations: 1) shoulder
angle of 0° and elbow angle of 90°; 2) shoulder angle of 90°
and elbow angle of 90° (angles as defined in Fig. 1A). With
respect to joint coordinates, the action of the elbow flexor
would result in consistent elbow flexion movements for both
configurations (this mapping is not perfect because of the
inertial properties of the limb). In contrast, there is a dramatic
change in the mapping between muscle action and hand coor-
dinates across arm configuration. The same elbow flexion
muscle force would yield largely leftward movements in the
first configuration and largely downward movements in the
second configuration. A similar, though less dramatic, rotation
would be present for shoulder muscles and can be seen in Fig.
4, D and G. It is important to stress that although muscle forces
are statistically related to joint motion (Graham et al. 2003),
this relationship is not direct. For example, muscle force at the

TABLE 2. Correlation coefficients (r) of joint-based pathlets
across subjects

Br Bi TLat TLo PM DA DP

Br 0.68
Bi 0.70 0.85
TLat �0.17 �0.58 0.73
TLo �0.79 �0.56 �0.03 0.93
PM �0.09 0.55 �0.82 �0.17 0.90
DA �0.20 0.60 �0.76 0.02 0.85 0.78
DP �0.007 �0.48 0.81 �0.27 �0.91 �0.82 0.92
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shoulder will result in motion of both the shoulder and elbow
due to the mechanical interactions between limb segments
(Hollerbach and Flash 1982).

The present results cannot explicitly rule out the possibility
that M1 neurons do encode high-level movement trajectories;
however, they do demonstrate that pathlets based on arm
kinematics would look similar, irrespective of whether M1
neurons encoded high-level movement trajectories or low-level
muscle activity. In short, our results caution against interpret-
ing correlations between M1 activity and high-level movement
features as indicative of the causal relationship between M1
and movement (Churchland and Shenoy 2007; Fetz 1992;
Mussa-Ivaldi 1988; Robinson 1992; Todorov 2000).

Although pathlets may not reveal causal links between
motor commands and arm kinematics, they do provide a more
sophisticated account of motor commands and their relation-
ship to arm movement than time-invariant representations. For
example, pathlets provide a natural description of changing
preferred directions that have been observed in several studies
of M1 (Mason et al. 1998; Sergio and Kalaska 1998). They
could also account for the known idiosyncratic sensitivity of
M1 directional tuning to reach velocity, distance, and time
(Churchland and Shenoy 2007). Furthermore, the observation
that M1 activity is related to kinematics that have already
occurred is consistent with the robust presence of peripheral
feedback in M1 (Conrad et al. 1975; Evarts 1968; Herter et al.
2009), a well-established result that is overlooked by many
recent studies focusing on time-invariant representations. Most
important, perhaps, decoding hand trajectories from a popula-
tion of M1 neurons is improved when assuming pathlet repre-
sentations (Hatsopoulos et al. 2007), a result that will likely
lead to improved performance of neural prosthetics and brain–
machine interfaces.
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